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Image reconstruction through the opaque medium has great significance in fields of biophotonics, optical im-
aging, mesoscopic physics, and optical communications. Previous researches are limited in the simple linear scat-
tering process. Here, we develop a nonlinear speckle decoder network, which can reconstruct the phase
information of the fundamental frequency wave via the nonlinear scattering signal. Further, we validate the ability
of our model to recover simple and complex structures by using MNIST and CIFAR data sets, respectively. We
then show that the model is able to restore the image information through different sets of nonlinear diffusers and
reconstruct the image of a kind of completely unseen object category. The proposed method paves the way to
nonlinear scattering imaging and information encryption. © 2024 Chinese Laser Press

https://doi.org/10.1364/PRJ.523728

1. INTRODUCTION

The study of the light behavior in complex media has contrib-
uted to the development of fields such as biological imaging [1],
non-line-of-sight imaging [2], and pulse shaping [3]. In a com-
plex medium, ballistic photons are exponentially attenuated
with propagation depth. It causes spatial distortion of the input
light and the output light [4], which gives rise to a random
interference speckle pattern [5]. Various optical imaging ap-
proaches have been developed to overcome the detrimental ef-
fects of such complex media, such as confocal detection [6] and
optical coherence tomography (OCT) [7]; however, the imag-
ing depth of these methods is limited by the intensity of single-
scattered waves, which decreases exponentially with depth.
Diffuse optical tomography [8] exploits multiple-scattered
waves to form an image and has much deeper imaging depth
than the OCT but with lower spatial resolution. Another
common approach is scattering autocorrelation imaging tech-
nology [9,10], which enables noninvasive imaging but has a
small field of view due to the optical memory effect. The pro-
posal of the wavefront shaping (WS) technique opens the way
to control light propagation in turbid media, such as in amor-
phous or disordered materials [11], biological tissues [12,13],
complex photonic structures [14,15], and multimode fibers
[16–18]. A transmission matrix (TM) [19,20] can be used
to characterize the linear input–output relationship of a fixed
scattering medium based on the superposition principle. By

measuring the TM of the scattering medium, the image
reconstruction can be realized [21–23].

Scattering medium is typically used as a linear operator in
most previous research. In fact, there have been many nonlinear
effects that provide superior performance in the field of bio-
logical imaging, such as two-photon excitation fluorescence
(TPEF) microscopy [24], second-harmonic generation (SHG)
microscopy [25], and coherent anti-Stokes Raman scattering
(CARS) microscopy [26]. Compared with conventional imag-
ing techniques, nonlinear optical imaging has the advantages of
deeper imaging depth (TPEF and SHG microscopy) and
higher spatial resolution (CARS microscopy). In fact,
nonlinear imaging is not limited to the optical field but also
includes ultrasound imaging. In the early stage, ultrasound im-
aging technology is based on linear acoustic principles, while
the nonlinear propagation of sound waves in biological tissues
can generate nonlinear acoustic signals and achieve tissue har-
monic imaging [27], which has better spatial resolution and
contrast than linear ultrasound imaging. Nonlinear imaging
has been demonstrated to enable label-free imaging of tissues.
Similar to the linear scattering imaging process, nonlinear sig-
nals are also highly susceptible to scattering. Therefore, the cor-
responding nonlinear scattering optical imaging is also a
fundamental problem in the field of imaging. In addition, ran-
dom multiple scattering provides a new scheme for message
encryption, while nonlinear scattering with higher complexity
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is expected to provide a more secure scheme for optical cryp-
tography [28,29]. However, in nonlinear scattering media,
which can radiate nonlinear signals, the coupling of multiple
scattering and nonlinear processes makes it difficult to charac-
terize the nonlinear scattering processes. Most of the nonlinear
imaging is concentrated on either homogeneous nonlinear
media [25] or linear scattering media combined with homo-
geneous nonlinear media [30]. Although the scattering matrix
[31] and scattering tensor [32] of the nonlinear scattering
medium have been proposed thus far, the exponentially increas-
ing complexitymakes them unsuitable for image reconstruction.
To our best knowledge, there is no report on the image
reconstruction through nonlinear scattering medium.

The deep learning (DL) method has been developed to pos-
sess the ability of extracting intrinsic features and dividing the
decision boundary according to data [33]. DL is shown to be a
powerful tool in the process of scattering imaging [34], super-
resolution imaging [33,35], holography [36], phase recovery
[37,38], and optical orbital angular momentum communica-
tion [39], which does not need to consider complex process
but end-to-end results process. It is pivotal to underscore
the theoretical underpinnings that facilitate these methodolo-
gies’ efficacy in handling nonlinear image reconstruction chal-
lenges. Multilayer feedforward networks possess the universal
approximation capability, essentially enabling these networks
to model any nonlinear continuous function and its derivatives
[40,41]. This principle underlies the natural proficiency of DL
methods in extracting intrinsic features and delineating deci-
sion boundaries directly from data without necessitating the
articulation of complex intermediary processes. For example,
using DL methods, it is possible to achieve physics-informed
imaging through unknown thin scattering media, which can
lead to high reconstruction fidelity for sparse objects by training
with only one diffuser [42]. Additionally, the DL method based
on a projector network was developed to project colorful images
through scattering media using three primary colors [43]. DL
networks, such as an improved U-Net, were utilized to harness
an object’s polarization information from scattering images
[44]. Additionally, a DL network, combining the gating net-
work (GTN) and the deep neural network (DNN), can achieve
a reasonable selection of polarization characteristics and utilize a
single model to adapt to various extensive scattering conditions
[45]. However, the aforementioned research was conducted in
linear systems. In the nonlinear domain, there is no existing
research utilizing DL methods. Since the DL method has non-
linear mappings, it naturally has advantages in addressing the
nonlinear image reconstruction problem [46].

In this paper, we develop an image reconstruction technique
that can restore the phase information of the fundamental fre-
quency (FF) wave through the nonlinear scattering signal of the
nonlinear scattering medium via DL method. We use part of
the images and the corresponding nonlinear speckle patterns as
the training set to train the nonlinear speckle decoder network
(NSDN) and the others as the test set. The trained NSDN can
be used to reconstruct the wavefront information of the FF
wave through a nonlinear speckle pattern. Through different
data sets and different diffuser experiments for training and
analysis, it is found that the system we proposed here has great

ability in nonlinear image reconstruction and robustness in dif-
ferent conditions.

2. RESULT

The phase distribution of the image uploaded on the FF beam
is destroyed when the FF signals interact with the nonlinear
scattering medium, which is LiNbO3 powder in the experi-
ment (see Appendix A). Further, the second harmonic (SH)
signals also possess distorted phase distribution and form the
nonlinear speckle pattern; the scattered SH signal at mth out-
put channel can be expressed as [32]

Eout
m �2ω� �

XN
n, o

kNL
mnoE in

n �ω�E in
o �ω�, (1)

where E in
n �ω� and E in

o �ω� are the nth and oth output channels
of the FF input field, and kNL

mno is the element of scattering
tensor K NL, which contains the information of generation
and scattering process of SH signals. Its complexity is much
greater than that of the linear scattering process, which can
be expressed as Eout

m �ω� � PN
n kmnE in

n �ω�; further, imaging
through linear scattering media can be realized directly by
inverting the transmission matrix. Due to the complexity of
the nonlinear scattering process, it is difficult for the tradition-
ally physical method to reconstruct the phase distribution of
the FF wave through the nonlinear harmonic speckle pattern.
Here, we specifically propose a convolutional neural network
named NSDN to realize image reconstruction from nonlinear
speckles; the process is shown in Fig. 1 (see Appendix B). Our
experiment is based on the principle of a one-to-one relation
between speckle and recovered image, achieved through speckle
segmentation mapping with ground truth segmentation.

The architecture of NSDN is shown in Fig. 2. It is a U-net
architecture [47], which has proven its ability in image segmen-
tation. The image reconstruction principle of U-Net is pri-
marily based on its symmetric encoding–decoding structure,
skip connections, and fusion of local and global information
[48]. This approach helps retain more detailed information
during the upsampling process and improves gradient flow,
making the network training more effective. We have improved
feature representation ability and reduced model overfitting of
this network by inserting a DenseBlock after each convolu-
tional layer. The DenseBlock design, which connects each layer
to all preceding layers, reduces parameter numbers, enhances
gradient flow, and maintains image details and contextual
information, making it efficient and effective for image
reconstruction tasks. Using DenseBlock also brings additional
benefits such as improved feature reuse and faster convergence
speed [49]. The training process is conducted using Python 3.6
on an NVIDIA Quadro P4000 GPU, and our code is imple-
mented based on TensorFlow. The cost function is expected to
be minimized through the training process using an adaptive
moment estimation (ADAM) optimizer, with a binary cross-
entropy function employed as the loss function used here.

First, we evaluate the physical relevance between the FF
image and SH speckle using a handwriting digit from the
MNIST database, which is used as a concise data set to illus-
trate the capability of relatively low spatial frequency image
reconstruction. The images of the MNIST data set have only
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two different grayscales (0 or 127 corresponding to phase
change of 0 or π) and its structure is relatively simple. The
MNIST data set used in the experiment includes 60,000 pat-
terns. The data set comprises original FF images (ground truth)

and their corresponding SH speckles for various object catego-
ries; further, 59,000 patterns among them are randomly
selected as the training set, and the other 1000 patterns are ap-
plied as test data set. Before the training process, we implement

Fig. 1. Process of reconstructing the original image by SH speckle. Different phase distribution of the image uploaded on FF beam will interact
with the nonlinear scattering medium and generate a different SH speckle pattern. The original image and SH speckle patterns are fed into NSDN
for joint training. The acquired SH speckle is fed into the learned NSDN to reconstruct the original image.

Fig. 2. NSDN architecture. Each box corresponds to a multichannel feature map. The number of channels is indicated at the top of each box, and
the x–y size is provided at the left edge. The color of the boxes corresponds to different operation types, as listed in the lower-right corner of the
figure. Arrows indicate the direction of data operations.
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a preprocessing procedure on the SH speckle patterns obtained
by CCD. The original speckle patterns are about 150 × 150
pixels and are subsequently cropped into 120 × 120 pixels in
the center of the image and resized into 64 × 64 pixels to fit
the computational limitation of NSDN. Images in the
training and test data sets are normalized between 0 and 1
for stabilizing the process of training. Then, we build a back-
propagation NSDN to learn a statistical relevance between the
SH speckle patterns and the FF signals with a goal of recovering
the FF images from nonlinear speckles.

Second, we test our NSDN to predict the phase distribution
using the handwriting figure shape of the FF beam from the
corresponding SH speckle. Representative examples of the
speckle and prediction pairs of MNIST are shown in Fig. 3(a).
The first row shows the phase pattern loaded on the SLM. We
would like to point out that these images for ground truth are
not seen in the training process. The second row displays the
corresponding scattered SH speckles collected by CCD. The
third row presents the image information of the FF light pre-
dicted by the scattered SH signals via our trained NSDN.
Therefore, the successful demonstration of nonlinear transmis-
sion relevance in reconstructing objects through scattering
LiNbO3 powder is achieved. To quantify the difference be-
tween a reconstructed image and its original counterpart, we
introduce two parameters, peak signal-to-noise ratio (α) and
structural similarity index (β), for quantitative description. α
is a full-reference image quality evaluation index,

α � 10 log

��2n − 1�2
MSE

�
, (2)

where n is the number of bits per pixel, and the unit of α is dB.
MSE � 1

ab

Pa
i
Pb

j �x�i, j� − y�i, j��2 is the mean squared error,
where the pixel size of the image is a × b, and x and y represent
the original image and predicted image. The larger value of α
means the lower distortion of the figure.

β can offset the defect that α cannot measure in terms of the
similarity of the image structure,

β�x, y� � 2μxμy � C1

μ2x � μ2y � C1

·
2δxy � C2

δ2x � δ2y � C2

, (3)

where μx and μy are all mean pixels of images, δx and δy are the
standard deviation of the image pixel values, δxy is the covari-
ance of x and y, and C1 and C2 are constants in order to avoid
system errors caused by denominator 0. β is a number between
0 and 1. The larger value of the β also represents the smaller
difference between two images.

Figure 3(b) displays the α and β evolution curves of the
training process, which begins to converge at the twentieth
epoch. The test set converges around epoch 13. When we
changed the learning rate at the sixtieth epoch, the recon-
structed image quality (PSNR) can be significantly improved
for training set. α exceeding 20 dB usually can be considered
acceptable imaging quality [50]. To show the training process
intuitively, Fig. 3(c) displays the prediction evolution as the
training epoch increases, exhibiting progressive improvements
in image recovery.

To further verify the practicality of our system for image
reconstruction, we use a data set that contains high spatial fre-
quency to verify the situation of a more complex image. The
CIFAR data set is used in our experiment, which contains

Fig. 3. Reconstruction of MNIST data set. (a) Prediction results of test MNIST data set and (b) the corresponding α and β evolution curves in the
training process. (c) Prediction evolution results of MNIST data set, with corresponding values of α and β.
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10 different types of 60,000 images, including airplane, auto-
mobile, bird, cat, deer, dog, frog, horse, ship, and truck. The
experiment is repeated with replacing the MNIST by CIFAR;
the experimental reconstruction results of CIFAR are as shown
in Fig. 4(a). Compared with MINST, the images in CIFAR
have more details, including 0–127 gray-scale values and
irregularity in object shapes, which are more difficult to be re-
constructed. The α and β evolution curves shown in Fig. 4(b)
converge more slowly than the case shown in Fig. 3(b), which
indicates the different difficulty in simple and complex image
recovery. We also note that the reconstructed images are still
blurry and unrecognizable before epoch 40, as illustrated in
Fig. 4(c), but they are significantly improved after the fiftieth
epoch. However, the reconstruction results are inferior to the
case of MNIST both from the visual view of the restored image
and the evaluation parameters α and β.

In order to verify the robustness of our method to various
scattering medium, we test the generalization of NSDN in a
speckle decoder. In the experiment, we constructed a new data
set containing a total of 60,000 images with MNIST and
CIFAR as input images and randomly divided this data set into
three groups, each containing 20,000 images. These three sets
of images were loaded onto the SLM to modulate the wavefront
of the FF wave, and the corresponding nonlinear scattering sig-
nals were collected. Similar to the previous experiment, 59,000
images are used as the training set, and 1000 images are used as
the test set. The average particle size of the three diffusers
used in the experiment ranged from 2 to 0.5 μm, as shown
in Fig. 5(a). Since these three lithium niobate powders have
different grain sizes, they exhibit distinct scattering character-
istics [51], resulting in different intensity distributions of the

nonlinear scattering field. The speckles and their reconstructed
images are shown in Fig. 5(b). As shown in the recovery effect
in the predicted images of Fig. 5(b), there is almost no differ-
ence comparing with situation using single diffuser in Figs. 3
and 4. This demonstrates that the proposed NSDN adapts to
different nonlinear diffusers of the same class and indicates the
superior robustness of the proposed NSDN.

Further, we demonstrate its ability for image reconstruction
of a kind of completely unseen object category through trained
NSDN. In the experiments, we use the same diffuser of the first
experiment. The MNIST and CIFAR data sets are divided into
10 classes based on labels, and each class contains 60,000 im-
ages. For MNIST, we put all 6000 images labeled “0” into the
test set and the remaining 54,000 images labeled “1” to “9” into
the training set. For CIFAR, we separate the “aircraft” class as
the test set containing 6000 images and feed the other 54,000
images into the training set. Representative prediction examples
of unseen classes are illustrated in Fig. 6. The results demon-
strate that the NSDN can realize relatively high-accuracy un-
seen images prediction on both simple binary and complex
gray-scale images.

3. DISCUSSION

We conduct four different experiments to demonstrate the sys-
tem we proposed here, which has a great ability in nonlinear
image reconstruction and robustness in different conditions.
First, we compare the prediction between experiments 1 and 2;
the reconstruction results in CIFAR are worse than in MNIST,
as shown in Fig. 7(a). This is due to the fact that the high-
frequency information of an image is difficult to collect in

Fig. 4. Reconstruction of CIFAR data set. (a) Prediction results of test CIFAR data set and (b) the corresponding α and β evolution curves in the
training process. (c) Prediction evolution results of CIFAR data set, with corresponding values of α and β.
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the far field after scattering. The disparity in restoration quality
between CIFAR and MNIST data sets can be attributed to two
factors. First, the limited resolution of the imaging system
makes it challenging to capture high spatial-frequency informa-
tion accurately. Second, the high spatial-frequency component
is difficult to incorporate into the second harmonic process, and
it is more vulnerable to being affected by background noise.
A more detailed comparison about the evolution indicators
is given in Fig. 7(a), where a comparison of the effects of differ-
ent diffusers is also given. The different diffusers make almost
no effect on the performance of reconstruction, which suggests
that the NSDN has a physical invariance with training and
testing the same object data set and the correlation between
diffusers and speckles is decoded by NSDN to almost the
same degree. This demonstrates the robustness to intensity dis-
tribution of speckle in NSDN. Next, as shown in Fig. 7(b),
we can see that the recovery effect, which is trained with seeing
all classes, of unseen classes is close to original results. The pre-
diction accuracy invariance maintained across unseen SH
speckles from a same data type does suggest that there are
learnable and generalizable features in our NSDN model.
This result reveals that the trained model has a universality
in nonlinear image recovery, and provides a possibility towards
decoding of high-dimensional complex phase information. The
codes and set of examples are shown in Code 1 and Dataset 1
[52,53].

In the field of scattering image reconstruction, the TM
method is commonly employed. This approach enables rapid
and precise recovery of various images after light passes through
a strongly scattering medium [54]. Moreover, compared with
optical coherence tomography (OCT), the optical imaging ma-
trix method extends the imaging depth limit for biological tis-
sues by a factor of 2 [55]. Additionally, autocorrelation methods
can be used to detect the optical field through the scattering
medium. This technique leverages the optical memory effect
without relying on prior information, allowing for noninvasive
imaging of fluorescent objects completely hidden behind an
opaque scattering layer [9]. While it addresses the invasive
nature of wavefront shaping and the transmission matrix,

Fig. 5. Verification of robustness of NSDN for different diffusers.
(a) Scanning electron microscope image of LiNbO3 diffusers.
(b) Reconstruction results for each data set using different diffusers,
with each column corresponding to a specific diffuser.

Fig. 6. Reconstruction results of unseen class of MNIST and
CIFAR data sets.

Fig. 7. Quantitative evaluation of the NSDN performance. 1st and 2nd represent different diffusers, respectively; M and C mean MNIST and
CIFAR data set, respectively; US means using unseen classes as test data set. (a) Different diffusers. (b) Unseen classes.
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the autocorrelation method is time-consuming for the entire
scanning process, thus limiting its capability to achieve real-
time imaging through scattering media. Compared with tradi-
tional methods, DL method offers automated feature extraction
capabilities, making image reconstruction more efficient and
accurate. Further, the DL method exhibits a certain degree
of robustness, thereby enhancing its potential for practical
applications.

4. FUTURE WORK AND APPLICATIONS

We have demonstrated a deep learning framework for image
reconstruction through a nonlinear signal of the scattering
medium. Due to the presence of cross-terms of the input field,
which makes the rank of the nonlinear scattering tensor
�N � 1�∕2 (where N is the number of input modes) times
larger than that of linear counterpart [32], a huge computa-
tional power is consumed to recover information of the input
field. Although it is difficult to give a specific input–output re-
lationship, our proposed method successfully solves nonlinear
problems. In addition, it can be extended to other nonlinear
frequency conversion processes such as third-harmonic gener-
ation, four-wave mixing, and stimulated Raman scattering with
proper configurations, which greatly extend the application
scenarios of scattering imaging. In addition, secure communi-
cation is important in modern information society. In conven-
tional communication schemes, two communicating parties
share separate keys generated using optical methods to achieve
encryption of information transmitted over a public channel.
Only the receiver holding the key can decrypt the information.
The TM method provides a new encryption scheme that uti-
lizes the random nature of the scattering medium to encrypt the
information [28,29], and decryption of the information can
only be achieved by the receiver who possesses the TM of
the scattering medium. However, these applications are all
based on linear scattering media, making optical encryption
vulnerable to a powerful attack known as a chosen ciphertext
attack (CCA) [56], which is analogous to measuring the TM of
the scattering medium. If an attacker gains access to the infor-
mation in the TM, any ciphertext can be directly decrypted by
the inverse of the TM. Our proposed image transmission
scheme based on a nonlinear scattering medium can realize
nonlinear optical encryption. For nonlinear optical encryption,
aggressors require O�N 2� plaintext–ciphertext pairs for the full
decryption, which is much more complex than the linear scat-
tering matrix. Therefore, the optical encryption based on non-
linear scattering media is secure as long as our training network
is not stolen.

5. CONCLUSION

In conclusion, we develop an image reconstruction method
through a nonlinear signal of the scattering medium by using
our NSDN. As far as we know, this is the first time to precisely
reconstruct image information of FF from nonlinear speckles gen-
erated from a nonlinear scattering medium. Further, the proposed
NSDN is able to restore the initial information through different
sets of diffusers and reconstruct the image of a kind of completely
unseen object category. Our approach promises highly stable,
large-scale nonlinear information transport through a complex

scattering medium. We expect that this technique can be applied
to arbitrary image reconstruction process with the nonlinear pres-
ence and information encryption.

APPENDIX A: PREPARATION OF THE
NONLINEAR SCATTERING SAMPLE

The nonlinear scattering sample is composed of LiNbO3 nano-
crystal powder. The sample is prepared using electrophoresis, as
shown in Fig. 8, which includes the following steps: (i) 500 mg
of LN powder and 20 mg of magnesium nitrate powder are
added to a beaker containing 200 mL of isopropanol; (ii) the
beaker is placed into an ultrasonic machine to form a suspen-
sion by vibration; and (iii) the deposition of the LN powder
on ITO-coated glass is formed by electrophoresis for 15 min.
Finally, the dried sample is annealed at 100°C for 1 h. The
average particle sizes of diffusers 1, 2, and 3 used in the experi-
ments are 2, 1.5, and 0.5 μm, respectively, and the thicknesses
are all about 100 μm.

APPENDIX B: DETAILS OF EXPERIMENTAL
SETUP

The experimental setup is shown in Fig. 9. The horizontal po-
larized light (λ � 1064 nm) is delivered from a nanosecond
laser source with power of nearly 100 mW as the FF light.
The telescope formed by lenses L1 and L2 expand the FF light
onto the SLM with a resolution of 1920 × 1200 pixels, which
carries the required phase information. Then, lens L3 focuses
the FF light with phase information into the LiNbO3 powder
to generate scattering SH signals. The thickness of the LiNbO3

powder is 100 μm, and the power of the generated SH signals is
about 50 μW. The scattering FF and SH signals are collected by
the microscope objective. Then, FF signals are filtered by filter
F, and the SH signals are imaged on the CCD with sensitivity
of 8000 mV/(Lux·s) by lens L4.

Fig. 8. Preparation of lithium niobate powder film using electro-
phoresis.
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